An anaesthetic vaporizer must deliver a safe, reliable concentration of volatile agent to the patient. Anaesthetists should understand the basic principles of. Vaporizers are an integral part of modern-day anaesthesia, allowing the delivery of safe concentrations of volatile anaesthetic agent. Over time, vaporizer design. Anaesthesia vaporizers for inhalational anaesthetic agents. Principal, classification, types, hazards.

Author: Akizil Kazragor
Country: Canada
Language: English (Spanish)
Genre: Love
Published (Last): 26 December 2011
Pages: 33
PDF File Size: 14.38 Mb
ePub File Size: 2.11 Mb
ISBN: 995-5-42170-260-3
Downloads: 48054
Price: Free* [*Free Regsitration Required]
Uploader: Meztikora

Vapour – gaseous phase anaesrhesia a substance below its critical temperature. Saturated Vapour Pressure SVP – partial pressure of the vapour phase of a substance when at equilibrium with its liquid phase e.

Anesthesia Gas Machine- Vaporizers

Increases rapidly as boiling point approaches. Boiling Point – temperature at which SVP equals ambient pressure. Desflurane boils wnaesthesia Volumes percent – percentage concentration of gas in a mixture; e. Plenum – a chamber at higher than atmospheric pressure, for distribution purposes.

In-circuit vapourisers have resistance in the bypass limb, pressurising the vapour chamber relative to the outlet.

Variable bypass vapouriser – one in which the total gas flow is divided in two streams by a variable resistance proportioning valve. Usually a small percentage enters a vapourising chamber, picking up molecules of volatile agent, while the majority travels through a bypass line.

Fraction Diverted – the proportion of Fresh Gas entering the anadsthesia chamber. Volume vapourised – approximately ml vapour per ml of liquid anaesthetic. Pumping effect – pulsatile back-pressure increases output, especially obvious with older vapourisers, at low flows, and with large pressure swings.

Increasing back-pressure will compress gas in the plenum chamber. When the back-pressure drops, vapour-laden gas in the chamber will re-expand and try to get out.

Anaesthetic vaporizer

It can get out via either the inlet or the outlet line. Via the inlet line, fully-saturated gas can mix with and contaminate the bypass gas. If there is a short connection between the vapour chamber and the outlet line, pumping back and forth between the two will also increase output. Modern vapourisers have overcome this with smaller vapourising chambers and long inlet and outlet lines. Pressurising effect – constant backpressure reduces output.

For example, high resistance in the line after the vapouriser will compress all gas before it. This increases the ratio of carrier molecules relative to vapour molecules in the vapour chamber, because the number of vapour molecules is fixed, whereas at higher pressures there will be more carrier gas molecules.

The absolute percentage of agent per unit volume leaving the vapouriser is correct, but when the gas mixture expands post-obstruction, there are fewer molecules of agent per volume of carrier than there should be. This is a minor effect. To get that 60ml of vapour we would need to divert ml of the ml into the vapourising chamber. The operator adjusts the fraction of the total fresh gas that is diverted into the vapourising chamber.

Typically only a small percentage of the total fresh gas flow enters the chamber. Gas entering the vapourising chamber is always fully saturated by the time it leaves. Vapour molecules added to the gas molecules entering the chamber increase the volume of gas leaving.

The extent of this increase in volume and the amount of vapour picked up per ml of gas entering depends on volatility of the agent in proportion to atmospheric pressure. Every 2 ml of incoming gas anxesthesia up 1 ml of vapour. The exact percentage to be diverted depends on the volatility of the agent SVPthe proportion of the fresh gas diverted into the vapourising chamber, and barometric pressure, as follows:. Sevo and Enflurane are abaesthesia volatile SVP approx. They require a greater fraction diverted anaeshtesia parts in to pick up 1 part of vapour.


Anasthesia made an excel spreadsheet that calculates fraction diverted by MAC and dial setting and shows how output varies at altitude. A summary appears in the table below:. Table 1 – Fraction diverted and effects of altitude.

Vaporizers | Anesthesia Equipment Simplified | AccessAnesthesiology | McGraw-Hill Medical

Atmospheric pressure is now just twice that of halothane, so the ratio of halothane to carrier at the output will be 1: The final output would be 12 0ml vapour in ml i. For classical plenum vapourisers, the percentage output increases roughly in proportion to the fall in barometric pressurebut a smaller partial pressure increase. Depth of anaesthesia depends on partial pressure, and the changes in partial pressure are relatively small, so normal vapouriser settings work as expected at altitude.

Most volatile agent monitors measure partial pressure and display this as a Sea Level equivalent percentage. In this sense the numbers displayed indicate ‘anaesthetic effect’ and require no mental ‘correction’ for altitude. If you are working at altitude you should confirm how the monitor operates as they are not all the same. The TEC 6 Desflurane vapouriser behaves differently. The percentage delivered is essentially held constant, so partial pressure FALLS in proportion to the fall in atmospheric pressure.

The dial setting should be turned up to compensate. The Aladdin Cassette system can be programmed to deliver either constant partial pressure output or constant pressure output. For a very detailed mathematical approach from which the above calculations were deriveddownload Steve Shafer’s ” How Vapourisers Work “. Kam’s point form notes on volatile uptake provide a more general overview. Intended for specific agents, no filler key, approximate output. Copper, measured flow, bubble through, out of circuit, not temperature compensated, non agent specific, manually metered flow vapouriser with temperature gauge.

Oxygen is bubbled through the vapour chamber from a dedicated accurate low flow rotameter and the fully saturated vapour then enters the circuit. Correct inflow can be determined from agent-specific tables that relate temperature, desired percentage output and FGF. For Sevoflurane and Enflurane, with lower vapour pressures:. Intrinsically dangerous because output must be manually changed whenever FGF is changed; failure to do so can lead to over or under-dosage.

Useful as a teaching tool; the Aladdin cassette system works basically on the same principle. Kam’s notes on volatile uptake. Variable bypass, incomplete vapourisation, flow-over without wicks, low resistance in-circuit, non-agent-specific but intended for Halothaneno temperature compensation, no interlocks.

Glass bowl marked AC Delco; originally an automotive fuel filter chamber. Economical if taken from place to place unused agent can be put back in the bottle, no wicks. Output decreased due to cooling after induction. Patient hyperventilation if light caused increased output. Variable bypass, incomplete vapourisation, bubble through or flow-over without wicks, low resistance in-circuit, non-agent-specific but intended for Halothane or Etherno temperature compensation, no interlocks.

Variable bypass, incomplete vapourisation, flow-over without wicks, low resistance, agent-specific for Ether, temperature compensated by bellows, temperature stabilised by water jacket, transportable but heavy 10kg. For more information see this review of drawover anaesthetic apparatus. Variable bypass, flow-over with metal mesh wicks, low resistance, multiple agents, not temperature compensated, light weight. Chamber only contains 50ml of agent.

Modern Anaesthesia Vapourisers

Two units in series required for a Sevo induction. Intended for field use. Can be used in series with a Laerdahl type self-inflating bag in the field or in series with anaesthesix EMO for halothane inductions. The first ‘modern’ precision agent specific vapouriser, launched in by Cyprane in Yorkshire as an update to the earlier Mk 1.


Agent-specific for Halothane, variable bypass, flow over with wicks, low resistance, temperature compensated with bimetallic strip in vapour path, non-tippable, no interlocks, subject to pumping and pressurising effects, non-keyed filler. Bimetallic strip tended to stick due to residual thymol in Halothane.

Images and history from Avporizers Museum of Anaesthesia. Variable bypass electronically controlled vapour flow regulation valve in the output line, resistor in the bypass line, flow-sensor in both vapour and bypass line, CPU external to cassette opens vapour flow valve to deliver desired FG percentageflow-over with wicks, in-circuit, temperature compensated temperature sensor in chambertransportable, light-weight.

Used in GE machines. A fan blows warm air over the cassette if its temperature falls below 18 degrees, as may happen with gaseous inductions Sevo or Des. The cassette includes magnets to ID the agent to the machine on insertion, an electrical connection to an internal temperature sensor, and self-sealing ports for gas in and out, but no other electronics.

It is tippable and robust. With Desflurane, the pressure inside the canister may exceed the inflow line pressure, at which point vaproizers inflow control valve and one-way must close firmly, and the unit functions as a pressurised injector. Partial failure of one or both of these valves may be associated with high levels of desflurane in the circuit. Like all calibrated variable bypass TEC vapourisers, the Desflurane TEC 6 has a manually operated mechanical variable-resistance proportioning valve on the top of the unit, and a resistance in the bypass line.

The clever bit was how to make it work reliably, knowing that Desflurane can boil so close to room temperature. The solution was quite ingenious. A resistance in anaethesia bypass line increases upstream pressure. As a result, naaesthesia pressure increases in proportion to FGF. This pressure is monitored by a differential pressure transducer that controls an electronic flow control valve so that the ‘output’ pressure of the vapourising chamber is always equal to the pressure in the fresh gas inlet line.

If FGF increases, both the bypass line pressure vxporizers the vapour line pressure will therefore increase to the same extent. The manually operated mechanical splitting valve on the top of the vapouriser only has to set the resistance ratio between fresh gas and vapour to set the output concentration just like it does in any other vapouriser. This is because the ‘thinner’ fresh gas flows more freely past the resistance, reducing the measured ‘upstream’ pressure for any given flow, which in turn reduces the vapouriser outlet pressure and hence number of molecules.

When more than one vapouriser is attached to the backbar, the interlock system should allow only one to be on at a time. Usually this is a simple mechanical device. The potential vapprizers is overdose on induction.

It can only happen when non-interlocked vapourisers are used. Clinically significant effects require:. When a downstream vapouriser containing a mixture of agents is turned on, it will deliver its normal agent at the dial vaporzers plus some of the dissolved agent. Note that accumulation of dissolved agent stops at partial pressure equilibrium with the upstream vapouriser.

This means that the partial pressure driving the dissolved agent out of the contaminated downstream vapouriser is usually very low indeed.